4^{ème}

Séquence 5 : Nombres rationnels et produits en croix

I. Nombres rationnels

 \heartsuit <u>Définition</u>: a et b désignent deux nombres entiers relatifs avec $b \neq 0$.

Un nombre rationnel est un nombre qui peut s'écrire $\frac{a}{b}$.

La fraction $\frac{a}{b}$ est le **quotient** de a par b. $\frac{a}{b} = a \div b$

Le quotient $\frac{a}{b}$ est donc le nombre qui, multiplié par b, donne a. $\frac{a}{b} \times b = a$

Exemples: 1) $\frac{4}{5}$, -5 = $\frac{-5}{1}$, 0,8 = $\frac{8}{10}$ sont des nombres rationnels.

2) π n'est pas un nombre rationnel.

II. Quotients égaux

Propriété: Un quotient ne change pas lorsqu'on multiplie ou divise son numérateur et son dénominateur par un même nombre différent de zéro. a, b, k désignent des nombres relatifs (b \neq 0 et k \neq 0).

•
$$\frac{a}{b} = \frac{a \times k}{b \times k}$$

•
$$\frac{a}{b} = \frac{a \times k}{b \times k}$$
 • $\frac{a}{b} = \frac{a \div k}{b \div k}$

Exemples: 1) Écrire $\frac{-3}{0.4}$ avec un dénominateur entier : $\frac{-3}{0.4} = \frac{-3 \times 10}{0.4 \times 10} = -\frac{30}{4}$

2) Simplifier
$$-\frac{25}{35}: -\frac{25}{35} = -\frac{5 \times 5}{7 \times 5} = -\frac{5}{7}$$

III. Comparer des nombres rationnels

Méthode: Pour comparer deux fractions de dénominateurs différents, on les transforme pour qu'elles aient le même dénominateur puis on compare leurs numérateurs.

Exemple: Comparer
$$\frac{17}{12}$$
 et $\frac{4}{3}$.

On a:
$$\frac{4}{3} = \frac{4 \times 4}{3 \times 4} = \frac{16}{12}$$
.

Or 17 > 16, donc
$$\frac{17}{12} > \frac{16}{12}$$
.

Ainsi
$$\frac{17}{12} > \frac{4}{3}$$
.

IV. Produits en croix

- \heartsuit **Propriété**: a, b, c, d désignent quatre nombres relatifs avec b \neq 0 et d \neq 0.
 - Si $\frac{a}{b} = \frac{c}{d}$ alors $a \times d = b \times c$.
 - Si a × d = b × c, alors $\frac{a}{b} = \frac{c}{d}$.

Exemples: 1) Les fractions $\frac{14}{32}$ et $\frac{35}{80}$ sont-elles égales?

$$14 \times 80 = 1120$$
 et $32 \times 35 = 1120$

Donc
$$\frac{14}{32} = \frac{35}{80}$$
.

2) Chercher le nombre x tel que $\frac{5}{3} = \frac{11}{x}$.

$$5 \times x = 3 \times 11$$

$$5 \times x = 33$$

$$x = \frac{33}{5}$$